
Lecture 2

Part 1

Modularity & Modular Design
Abstract Data Types (ADTs)

Modularity: Childhood Activities

⑦

Modularity: Daily Constructions

80

Modularity: Computer Architectures

50

Modularity: System Developments

o_0

Modularity: Software Design

0

Java Classes: Abstract Data Types?

②

Eiffel Classes: Abstract Data Types?

Contract View

Design Diagram

E

Lecture 2

Part 2

Copying Objects:
Reference vs. Shallow vs. Deep

Reference Copy: c1 := c2

⑦

Shallow Copy: c1 := c2.twin

To

Deep Copy: c1 := c2.deep_twin

TO

Reference vs. Shallow vs. Deep Copies

⑦

Collection Objects: Reference Copy & Make Changes

⇐

Collection Objects: Shallow Copy & Make 1st-Level Changes

⇐

Collection Objects: Shallow Copy & Make 2nd-Level Changes

⇒

Collection Objects: Deep Copy & Make 1st-Level Changes

to

Collection Objects: Deep Copy & Make 2nd-Level Changes

LI

Lecture 2

Part 3

Writing Complete Postconditions

f
 require
 ...
 do
 ...
 ensure
 ... old expr ...
 end

Contract View Runtime Contract Checks

call f

check precondition of f

check postcondition of f

execute implementation of f

cache old expressions0

class BANK
 accounts: ARRAY[ACCOUNT]

 some_feature
 require
 ...
 do
 ...
 ensure
 ... old expr ...
 end
end

Caching Values for old Expressions in Postconditions

class ACCOUNT
 id: INTEGER
end

old accounts[i].id

(old accounts[i]).id

(old accounts)[i].id

(old Current).accounts[i].id

Caching Values for old Expressions in Postconditions

(old accounts[i].twin).id

(old accounts.twin)[i].id

(old Current.twin).accounts[i].id

ensure (in context of BANK)

BANK
accounts

i

id

ACCOUNT

23

How to cache at runtime?

Revisit: Bank Accounts in Java V5

How does the corresponding Eiffel design look like
(with automatic caching of pre-state values)?

-

Use of old in across Expression in Postcondition

Hint: What value will be cached at runtime
 before executing the implementation of update?

-

⑤

Unit Test for All 5 Versions

⑦

b.deposit(“Steve”, 100)

Version 1: Incomplete Contracts, Correct Implementation

To

b.deposit(“Steve”, 100)

Version 2: Incomplete Contracts, Wrong Implementation

b.deposit(“Steve”, 100)

Version 3: Complete Contracts (Ref. Copy), Correct Implementation

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

1st Iteration

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

2nd Iteration

To

across old accounts is acc
all
 acc.owner /~ n
 implies
 acc ~ Current.account_of (acc.owner)
end

Use of across in Postcondition

For each iteration:

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

Case 1: acc.owner is not n

Case 2: acc.owner is n

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

-

b.deposit(“Steve”, 100)

Version 4: Complete Contracts (Shallow Copy), Correct Implementation

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

1st Iteration

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

2nd Iteration

b.deposit(“Steve”, 100)

Version 5: Complete Contracts (Deep Copy), Correct Implementation

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

1st Iteration

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)

2nd Iteration

8

Complete Postcondition: Exercise
- Doggone

OEEsaag.%EBaag.es
%EBaa→

OEEsaag.aoEBBB.es
EoEBBB-

